Instrumentación y Sistemas de Control para Procesos Industriales

Convenio I.E. General Santander – Universidad de Pamplona

Resistencias Eléctricas

leave a comment »

RESISTENCIAS ELÉCTRICAS

La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente. Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmnímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.

La resistencia de cualquier objeto depende únicamente de su geometría y de su resistividad, por geometría se entiende a la longitud y el área del objeto mientras que la resistividad es un parámetro que depende del material del objeto y de la temperatura a la cual se encuentra sometido. Esto significa que, dada una temperatura y un material, la resistencia es un valor que se mantendrá constante. Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón entre la caída de tensión y la corriente en dicha resistencia, así:

R = {V \over I}

donde R es la resistencia en ohmiosV es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.

Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductoresaislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.

Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como ley de Ohm:

 u (t) = R \cdot i(t) \;

donde i(t) es la corriente eléctrica que atraviesa la resistencia de valor R y u(t) es la diferencia de potencial que se origina. En general, una resistencia real podrá tener diferente comportamiento en función del tipo de corriente que circule por ella.

Comportamiento en corriente continua

Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor por efecto Joule. La ley de Ohm para corriente continua establece que:

R = {V \over I} \;

donde R es la resistencia en ohmiosV es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.

Comportamiento en corriente alterna

Figura 3. Diagrama fasorial.

Como se ha comentado anteriormente, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real.

Por ejemplo, en una resistencia de carbón los efectos inductivos solo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto películar.

Consideremos una resistencia R, como la de la figura 2, a la que se aplica una tensión alterna de valor:

u(t)=V_0 \cdot \sin(\omega t + \beta),

De acuerdo con la ley de Ohm circulará una corriente alterna de valor:

i(t)= {u(t) \over R} = I_0 \cdot \sin(\omega t + \beta),

donde I_0 = {V_0 \over R}. Se obtiene así, para la corriente, una función senoidal que está en fase con la tensión aplicada (figura 3).

Si se representa el valor eficaz de la corriente obtenida en forma polar:

\vec{I} = I_{/\!\!\! \underline{\ \beta}}

Y operando matemáticamente:

\vec{I} = \left ( {V \over R} \right )_{/\!\!\! \underline{\ \beta}} = {{V_{/\!\!\! \underline{\ \beta}}} \over {R_{/\!\!\! \underline{\ 0^\circ}}}}

De donde se deduce que en los circuitos de CA la resistencia puede considerarse como una magnitud compleja con parte real y sin parte imaginaria o, lo que es lo mismo con argumento nulo, cuya representación binómica y polar serán:

\vec{R} = R + 0j = R_{/\!\!\! \underline{\ 0^\circ}}

Resistencia equivalente

Figura 4. Asociaciones generales de resistencias: a) Serie y b) Paralelo. c) Resistencia equivalente.

Se denomina resistencia equivalente de una asociación respecto de dos puntos A y B, a aquella que conectada la misma diferencia de potencial, UAB, demanda la misma intensidadI (ver figura 4). Esto significa que ante las mismas condiciones, la asociación y su resistencia equivalente disipan la misma potencia.

Asociación en serie

Dos o más resistencias se encuentran conectadas en serie cuando al aplicar al conjunto una diferencia de potencial, todas ellas son recorridas por la misma corriente.

Para determinar la resistencia equivalente de una asociación serie imaginaremos que ambas, figuras 4a) y 4c), están conectadas a la misma diferencia de potencial, UAB. Si aplicamos la segunda ley de Kirchhoff a la asociación en serie tendremos:

U_{AB} = U_1 + U_2 +...+ U_n \,

Aplicando la ley de Ohm:

U_{AB} = IR_1 + IR_2 +...+ IR_n = I(R_1 + R_2 +...+ R_n) \,

En la resistencia equivalente:

U_{AB} = IR_{AB} \,

Finalmente, igualando ambas ecuaciones se obtiene que:

IR_{AB} = I(R_1 + R_2 +...+ R_n) \,

Y eliminando la intensidad:

R_{AB} = R_1 + R_2 +...+ R_n = \sum_{k=1}^n R_k

Por lo tanto, la resistencia equivalente a n resistencias montadas en serie es igual a la sumatoria de dichas resistencias.

Anuncios

Written by pgalvisvera

18 febrero, 2011 a 0:31

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: